Berry phase in homogeneous Kähler manifolds with linear Hamiltonians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Hamiltonians on homogeneous Kähler manifolds of coherent states

Representations of coherent state Lie algebras on coherent state manifolds as first order differential operators are presented. The explicit expressions of the differential action of the generators of semisimple Lie groups determine for linear Hamiltonians in the generators of the groups first order differential equations of motion with holomorphic polynomials coefficients. For hermitian symmet...

متن کامل

Kähler (& Hyper-kähler) Manifolds

These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short introduction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces. However, they also include other interesting results not related to K3 sur...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Homogeneous Para - Kähler Einstein

A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...

متن کامل

Locally conformal Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2001

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1396837